Mainstreaming Native Crops and Varieties for Nutritional and Livelihood Security: Insights Through Nutrition Profiling Racheal John, M. Tomar, Saman S. Rahman, Sanjeev K. Singh, Rashmi Yadav, Vikender Kaur, Mohar Singh, Mamta Arya, Rajwant K Kalia, Anuradha Bhartiya, Sudhir P Ahlawat, Rakesh Bhardwaj

BACKGROUND

•	Agricultural Biodiversity Conservation	
	- through utilization - reduces	25
	vulnerability, ensures good nutrition	30 30
	and provides ecosystem services.	25
•	4491 native varieties belonging to 20	20
	crops tested in 4 agroecological	15
	regions by farmers using	10
(crowdsourcing approach.	5
•	246 potential native varieties	v
	identified by farmers and are being	
(conserved in 32 community seed	53 DO
•	banks (CSBs).	Rous
• '	To ensure sustainability of CSBs and	
	mainstreaming of native varieties -	
-	value chain establishment is essential.	
•	Native varieties are generally nutri-	500
	dense and nutritional	
	profiling/labelling for assessing	450
	nutritional traits of these varieties is	400
	crucial	
•	Nutrition profiling is most important	350
	for developing value chain to native	
	crops and varieties including market	300
	linkage.	250
	3 • ·	
OF	SIECTIVE	200
•	Nutritional profiling for assessing	150
	nutritional traits such as protein. oil.	
	dietarv fibre. total starch. amvlose.	100
	total sugars, total phytate, total	
	phenols, profile of minerals and amino	50
	acids.	0
M	ATERIAL	Pro
•	More than 2000 varieties belonging to	
	20 crops – rice, maize, barley, pearl	
	millet, Finger Millet, Foxtail Millet,	- 1
	Little millet, Barnyard Millet,	John, e
	Sorghum, Green gram, Moth Bean.	Shukla
	Horse Gram, Chickpea, Pigeon pea.	p.469.
	kidney bean, ricebean, Sovbean,	Bartwa
	sesame, amaranth, buckwheat	p.1050
M	ETHOD	Padhi

et al 2023 Mining nutri-dense accessions from rice landraces of Assam, India. *Heliyon*, p.e17524. a et al 2023. Developing an NIRS Prediction Modelin Amaranth and Buckwheat. Agriculture, 13(2),

al, et al 2023. NIR ...prediction Model in mungbean. Journal of Food Composition and Analysis, 116,)87..

et al 2022 Development ...NIRS prediction models forcowpea germplasm. Front. Nutr. 9:1001551 John at al 2022 Cormulaçm variability multi-trait robust production models in rice Frontiors in Nutrition

PUBLICATIONS

MAJOR FINDINGS

- High Protein Rice (>12%) Gita, Jhini, Jaulia, Raskadam.
- Low Glycaemic Rice (EGI < 50) -Betguti, Pengeri shali, lota shali, Banki shali, Amona bao, Kokowa bao were identified
- High Protein (>17%) with High β -Glucan (> 5%) Hulless Barley-IC113048, IC113050, EC481703, EC578537.
- Malt Barley (Protein <12%, β-Glucan <2% and Phenols <0.2%) -EC492362, IC38837, IC281574, EC 177251.
- High Protein Maize (12%) Ragal Makka & Safed Chamba Local.
- Low Rancid and Good Popping Pearl *millet-* Peeli Bajri and Gadhwal ki dhani also rich in phenols, calcium and iron.
- High Starch (67%) Finger Millet good for popping and chapati making also rich sugar, phenols and antioxidants.
- Mustard Gucchedar Sarsoan (IC395550) preferred for stout stem, bunched siliqua and high oil content (45%)
- *Sesame-* RT-351, EC346824 and EC370727 for high oil (54%)
- Soybean AMS-162 Croon arow IC070/00 0C0000 C

CONCLUSION

The evidence-based research will help in designing and developing appropriate policy platform to support conservation and used of fast deleting

The study was supported by UNEP-GEF funded project "Mainstreaming agricultural biodiversity conservation and utilization in the agricultural sector to ensure ecosystem services and reduce